Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Bull (Beijing) ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38637224

ABSTRACT

Orderly hierarchical structure with balanced mechanical, chemical, and electrical properties is the basis of the natural bone microenvironment. Inspired by nature, we developed a piezocatalytically-induced controlled mineralization strategy using piezoelectric polymer poly-L-lactic acid (PLLA) fibers with ordered micro-nano structures to prepare biomimetic tissue engineering scaffolds with a bone-like microenvironment (pcm-PLLA), in which PLLA-mediated piezoelectric catalysis promoted the in-situ polymerization of dopamine and subsequently regulated the controllable growth of hydroxyapatite crystals on the fiber surface. PLLA fibers, as analogs of mineralized collagen fibers, were arranged in an oriented manner, and ultimately formed a bone-like interconnected pore structure; in addition, they also provided bone-like piezoelectric properties. The uniformly sized HA nanocrystals formed by controlled mineralization provided a bone-like mechanical strength and chemical environment. The pcm-PLLA scaffold could rapidly recruit endogenous stem cells, and promote their osteogenic differentiation by activating cell membrane calcium channels and PI3K signaling pathways through ultrasound-responsive piezoelectric signals. In addition, the scaffold also provided a suitable microenvironment to promote macrophage M2 polarization and angiogenesis, thereby enhancing bone regeneration in skull defects of rats. The proposed piezocatalytically-induced controllable mineralization strategy provides a new idea for the development of tissue engineering scaffolds that can be implemented for multimodal physical stimulation therapy.

2.
ACS Sens ; 9(3): 1301-1309, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38373043

ABSTRACT

Continuous pulse wave detection can be used for monitoring and diagnosing cardiovascular diseases, and research on pulse sensing based on piezoelectric thin films is one of the hot spots. Usually, piezoelectric thin films do not come into direct contact with the skin and need to be connected through a layer of an elastic medium. Most views think that the main function of this layer of elastic medium is to increase the adhesion between the sensor component and the skin, but there is little discussion about the impact of the elastic medium on pulse vibration transmission. Here, we conducted a detailed study on the effects of Young's modulus and the thickness of elastic media on pulse sensing signals. The results show that the waveform amplitude of the piezoelectric sensing signal decreases with the increase of Young's modulus and thickness of the elastic medium. Then, we constructed a theoretical model of the influence of elastic media on pulse wave propagation. The amplitude of the pulse wave signal detected by the optimized sensor was increased to 480%. Our research shows that by regulating Young's modulus and thickness of elastic media, pulse wave signals can undergo a similar amplification effect, which has an important theoretical reference value for achieving ambulatory blood pressure monitoring based on high-quality pulse waves.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Elastomers , Signal-To-Noise Ratio , Elastic Modulus , Models, Theoretical
3.
Sci Adv ; 10(1): eadi6799, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181077

ABSTRACT

Electrical stimulation can effectively accelerate bone healing. However, the substantial size and weight of electrical stimulation devices result in reduced patient benefits and compliance. It remains a challenge to establish a flexible and lightweight implantable microelectronic stimulator for bone regeneration. Here, we use self-powered technology to develop an electric pulse stimulator without circuits and batteries, which removes the problems of weight, volume, and necessary rigid packaging. The fully implantable bone defect electrical stimulation (BD-ES) system combines a hybrid tribo/piezoelectric nanogenerator to provide biphasic electric pulses in response to rehabilitation exercise with a conductive bioactive hydrogel. BD-ES can enhance multiple osteogenesis-related biological processes, including calcium ion import and osteogenic differentiation. In a rat model of critical-sized femoral defects, the bone defect was reversed by electrical stimulation therapy with BD-ES and subsequent bone mineralization, and the femur completely healed within 6 weeks. This work is expected to advance the development of symbiotic electrical stimulation therapy devices without batteries and circuits.


Subject(s)
Bone Regeneration , Osteogenesis , Humans , Animals , Rats , Exercise Therapy , Calcification, Physiologic , Electric Stimulation
4.
Mater Horiz ; 11(4): 1032-1045, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38073476

ABSTRACT

Peripheral nerve injury (PNI) is a common clinical challenge, requiring timely and orderly initiation of synergistic anti-inflammatory and reparative therapy. Although the existing cascade drug delivery system can realize sequential drug release through regulation of the chemical structure of drug carriers, it is difficult to adjust the release kinetics of each drug based on the patient's condition. Therefore, there is an urgent need to develop a cascade drug delivery system that can dynamically adjust drug release and realize personalized treatment. Herein, we developed a responsive cascade drug delivery scaffold (RCDDS) which can adapt to the therapeutic time window, in which Vitamin B12 is used in early controllable release to suppress inflammation and nerve growth factor promotes regeneration by cascade loading. The RCDDS exhibited the ability to modulate the drug release kinetics by hierarchically opening polymer chains triggered by ultrasound, enabling real-time adjustment of the anti-inflammatory and neuroregenerative therapeutic time window depending on the patient's status. In the rat sciatic nerve injury model, the RCDDS group was able to achieve neural repair effects comparable to the autograft group in terms of tissue structure and motor function recovery. The development of the RCDDS provides a useful route toward an intelligent cascade drug delivery system for personalized therapy.


Subject(s)
Peripheral Nerve Injuries , Rats , Humans , Animals , Peripheral Nerve Injuries/drug therapy , Sciatic Nerve/injuries , Sciatic Nerve/physiology , Drug Delivery Systems , Drug Carriers/pharmacology , Drug Carriers/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Adv Healthc Mater ; 12(32): e2301126, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37747342

ABSTRACT

Osteoarthritis (OA) is the most prevalent joint degenerative disease characterized by chronic joint inflammation. The pathogenesis of OA has not been fully elucidated yet. Cartilage erosion is the most significant pathological feature in OA, which is considered the result of cytomechanical homeostasis destruction. The cytomechanical homeostasis is maintained by the dynamic interaction between cells and the extracellular matrix, which can be reflected by cell traction force (CTF). It is critical to assess the CTF to provide a deeper understanding of the cytomechanical homeostasis destruction and progression in OA. In this study, a silicon nanopillar array (Si-NP) with high spatial resolution and aspect ratio is fabricated to investigate the CTF in response to OA. It is discovered that the CTF is degraded in OA, which is attributed to the F-actin reorganization induced by the activation of RhoA/ROCK signaling pathway. Si-NP also shows promising potential as a mechanopharmacological assessment platform for OA drug screening and evaluation.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Silicon , Osteoarthritis/therapy , Cartilage , Extracellular Matrix/metabolism , Homeostasis , Chondrocytes/metabolism , Cartilage, Articular/metabolism
6.
Adv Mater ; 35(16): e2208395, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36681867

ABSTRACT

The endogenous electric field (EF) generated by transepithelial potential difference plays a decisive role in wound reepithelialization. For patients with large or chronic wounds, negative-pressure wound therapy (NPWT) is the most effective clinical method in inflammation control by continuously removing the necrotic tissues or infected substances, thus creating a proproliferative microenvironment beneficial for wound reepithelialization. However, continuous negative-pressure drainage causes electrolyte loss and weakens the endogenous EF, which in turn hinders wound reepithelialization. Here, an electrogenerative dressing (EGD) is developed by integrating triboelectric nanogenerators with NPWT. By converting the negative-pressure-induced mechanical deformation into electricity, EGD produces a stable and high-safety EF that can trigger a robust epithelial electrotactic response and drive the macrophages toward a reparative M2 phenotype in vitro. Translational medicine studies confirm that EGD completely reshapes the wound EF weakened by NPWT, and promotes wound closure by facilitating an earlier transition of inflammation/proliferation and guiding epithelial migration and proliferation to accelerate reepithelialization. Long-term EGD therapy remarkably advances tissue remodeling with mature epithelium, orderly extracellular matrix, and less scar formation. Compared with the golden standard of NPWT, EGD orchestrates all the essential wound stages in a noninvasive manner, presenting an excellent prospect in clinical wound therapy.


Subject(s)
Wound Healing , Bandages , Electrons , Re-Epithelialization , Cell Proliferation , Humans , Macrophages , Female , Animals , Swine , Cell Line
7.
Materials (Basel) ; 15(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36234208

ABSTRACT

This review mainly focuses on the surface functionalization approaches of titanium dioxide (TiO2) to prevent bacterial infections and facilitate osteointegration simultaneously for titanium (Ti)-based orthopedic implants. Infection is one of the major causes of implant failure. Meanwhile, it is also critical for the bone-forming cells to integrate with the implant surface. TiO2 is the native oxide layer of Ti which has good biocompatibility as well as enriched physical, chemical, electronic, and photocatalytic properties. The formed nanostructures during fabrication and the enriched properties of TiO2 have enabled various functionalization methods to combat the micro-organisms and enhance the osteogenesis of Ti implants. This review encompasses the various modifications of TiO2 in aspects of topology, drug loading, and element incorporation, as well as the most recently developed electron transfer and electrical tuning approaches. Taken together, these approaches can endow Ti implants with better bactericidal and osteogenic abilities via the functionalization of TiO2.

8.
Small Methods ; 6(10): e2200653, 2022 10.
Article in English | MEDLINE | ID: mdl-36074976

ABSTRACT

Wireless wearable sweat analysis devices can monitor biomarkers at the molecular level continuously and in situ, which is highly desired for personalized health care. The miniaturization, integration, and wireless operation of sweat sensors improve the comfort and convenience while also bringing forward new challenges for power supply technology. Herein, a wireless self-powered wearable sweat analysis system (SWSAS) is designed that effectively converts the mechanical energy of human motion into electricity through hybrid nanogenerator modules (HNGMs). The HNGM shows stable output characteristics at low frequency with a current of 15 mA and a voltage of 60 V. Through real-time on-body sweat analysis powered by HNGM, the SWSAS is demonstrated to selectively monitor biomarkers (Na+ and K+ ) in sweat and wirelessly transmit the sensing data to the user interface via Bluetooth.


Subject(s)
Sweat , Wearable Electronic Devices , Humans , Monitoring, Physiologic , Electric Power Supplies , Biomarkers
9.
ACS Appl Mater Interfaces ; 14(19): 22206-22215, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35522970

ABSTRACT

The photothermal Marangoni effect enables direct light-to-work conversion, which is significant for realizing the self-propulsion of objects in a noncontact, controllable, and continuous manner. Many promising applications have been demonstrated in micro- and nanomachines, light-driven actuators, cargo transport, and gear transmission. Currently, the related studies about photothermal Marangoni effect-induced self-propulsion, especially rotational motions, remain focused on developing the novel photothermal materials, the structural designs, and the controllable self-propulsion modes. However, extending the related research from the laboratory practice to practical application remains a challenge. Herein, we combined the photothermal Marangoni effect-induced self-propulsion with the triboelectric nanogenerator technology for sunlight intensity determination. Photothermal black silicon, superhydrophobic copper foam with drag-reducing property, and triboelectric polytetrafluoroethylene film were integrated to fabricate a triboelectric nanogenerator. The photothermal-Marangoni-driven triboelectric nanogenerator (PMD-TENG) utilizes the photothermal Marangoni effect-induced self-propulsion to realize the relative motion between the triboelectric layer and the electrode, converting light into electrical signals, with a peak value of 2.35 V. The period of the output electrical signal has an excellent linear relationship with the light intensity. The accessible electrical signal generation strategy proposed here provides a new application for the photothermal Marangoni effect, which could further inspire the practical applications of the self-powered system based on the photothermal Marangoni effect, such as intelligent farming.

10.
ACS Appl Mater Interfaces ; 14(17): 20122-20131, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35452218

ABSTRACT

A tactile sensor is the centerpiece in human-machine interfaces, enabling robotics or prosthetics to manipulate objects dexterously. Specifically, it is crucial to endow the sensor with the ability to detect and distinguish normal and shear forces in real time, so that slip detection and more complex control could be achieved during the interaction with objects. Here, a self-powered multidirectional force sensor (SMFS) based on triboelectric nanogenerators with a three-dimensional structure is proposed for sensing and analysis of normal and shear forces in real time. Four polydimethylsiloxane (PDMS) cylinders act as the force sensing structure of the SMFS. A flexible tip array made of carbon black/MXene/PDMS composites is used to generate triboelectric signals when the SMFS is driven by an external force. The SMFS can sense multidimensional force due to the adaptability of the PDMS cylinders and detect tiny force due to the sensitivity of the flexible tips. A small shear force as low as 50 mN could be recognized using the SMFS. The direction of the externally applied force could be recognized by analyzing the location and output voltage amplitude of the SMFS. Moreover, the tactile sensing applications, including reagent weighing and force direction perception, are also achieved by using the SMFS, which demonstrates the potential in promoting developments of self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotic applications.


Subject(s)
Robotics , Wearable Electronic Devices , Humans , Mechanical Phenomena , Touch
11.
Small ; 18(14): e2108091, 2022 04.
Article in English | MEDLINE | ID: mdl-35187811

ABSTRACT

Converting the mechanical energy of human motion into electricity is considered an ideal energy supply solution for portable electronics. However, low-frequency human movement limits conversion efficiency of conventional energy harvesting devices, which is difficult to provide sustainable power for portable electronic devices. Herein, a fitness gyroscope nanogenerator (fg-NG) based on a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) is developed that can convert low-frequency wrist motion into high-frequency rotation by using the frequency up-conversion effect of the gyroscope. Remarkably, the fg-NG can reach a rotational speed of over 8000 rpm by hand, increasing the frequency by more than 280 times. The fg-NG can continuously and stably output a current of 17 mA and a voltage of 70 V at frequency of 220-230 Hz. The fg-NG is demonstrated to consistently power a hygrothermograph, smart bracelet, and mobile phone. Also, it can be applicated to a self-powered intelligent training system, showing its immense application potential in portable electronics and wireless Internet of Things devices.


Subject(s)
Electric Power Supplies , Nanotechnology , Electricity , Electronics , Humans , Motion
12.
Small ; 17(29): e2101430, 2021 07.
Article in English | MEDLINE | ID: mdl-34145752

ABSTRACT

Free-standing rotary triboelectric nanogenerators (rTENG) can accomplish special tasks which require both high voltage and high frequency. However, the reported high performance rTENG all have complex structures for output enhancement. In this work, an ultra-simple strategy to build high performance rTENG is developed. With only one small paper strip added to the conventional structure, the output of the TENG is promoted hugely. The voltage is triplicated to 2.3 kV, and the current and charge are quintupled to 133 µA and 197 nC, respectively. The small paper strip, with the merits of ultra-simplicity, wide availability, easy accessibility and low cost, functions as a super-effective charge supplement. This simple and delicate structure enables ultra-high durability with the 2.3 kV voltage output 100% maintained after 1 000 000 cycles. This charge supplementary strategy is universally effective for many other materials, and decouples the output enhancement from any friction or contact on the metal electrodes, emphasizing a critical working principle for the rTENG. Atmospheric cold plasma is generated using the paper strip rTENG (ps-rTENG), which demonstrates strong ability to do bacteria sterilization. This simple and persistent charge supplementary strategy can be easily adopted by other designs to promote the output even further.


Subject(s)
Nanotechnology
13.
Materials (Basel) ; 13(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796564

ABSTRACT

Group III-V semiconductors with direct band gaps have become crucial for optoelectronic and microelectronic applications. Exploring these materials for spintronic applications is an important direction for many research groups. In this study, pure and cobalt doped GaN nanowires were grown on the Si substrate by the chemical vapor deposition (CVD) method. Sophisticated characterization techniques such as X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), High-Resolution Transmission Electron Microscopy (HRTEM) and photoluminescence (PL) were used to characterize the structure, morphology, composition and optical properties of the nanowires. The doped nanowires have diameters ranging from 60-200 nm and lengths were found to be in microns. By optimizing the synthesis process, pure, smooth, single crystalline and highly dense nanowires have been grown on the Si substrate which possess better magnetic and optical properties. No any secondary phases were observed even with 8% cobalt doping. The magnetic properties of cobalt doped GaN showed a ferromagnetic response at room temperature. The value of saturation magnetization is found to be increased with increasing doping concentration and magnetic saturation was found to be 792.4 µemu for 8% cobalt doping. It was also depicted that the Co atoms are substituted at Ga sites in the GaN lattice. Furthermore N vacancies are also observed in the Co-doped GaN nanowires which was confirmed by the PL graph exhibiting nitrogen vacancy defects and strain related peaks at 455 nm (blue emission). PL and magnetic properties show their potential applications in spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...